Electron beam lithography for GaAs and GaN HEMT

E. Giovine

Istituto di Fotonica e Nanotecnologie-CNR CORIEN

P. Romanini, D. Dominijanni

GaAs Foundry Leonardo-Finmeccanica

LEONARDO

Outline

- HEMTs
- EBL technique
- GaAs T- gates
- GaN T-gates
- Conclusions

Nano Rome. 20-23 September 2016 Innovation

High-electron-mobility transistors

HEMTs

GaAs, GaN high frequency application in wireless communications, defense industry, satellites and RADARs T/R modules based on high power amplifiers (HPA) and low noise amplifiers (LNA).

2DEG density is modulated by V_G HEMTs are normally "ON" for $V_G = 0$ Pinch—off for $V_G = V_{PO} < 0$

Why GaAs and GaN?

1)		Si	GaAs	GaN
	E _g (eV)	1.1	1.42	3.39
	μ _n (cm²/Vs)	1350	8500	2000
	v_e (x10 ⁷ cm/s)	1.0	1.0	1.5
	E _{bd} (MV/cm)	0.3	0.4	3.3
	Θ (W/cmK)	1.5	0.43	1.3

GaAs: high mobility

GaN: high breakdown, thermal conductivity, electron velocity

2) 2DEG GaAs/AlGaAs and GaN/AlGaN heterostructures: improvement of device performance

HIGH FREQUENCY HIGH POWER DEVICES

GaN more expensive than GaAs

At fixed power GaN amplifier are smaller: costs reduction

HEMT
$$f_T = \frac{g_m}{2\pi C_{GS}}$$
 $f_{MAX} = \frac{f_T}{2\sqrt{r_1 + f_T \tau_3}}$

Cutoff frequency f_T is in inversely proportional to gate length L_G

Scaling down the gate length is required to improve the device performances and increase the frequency

high resolution on large area versatile tool for R&D no mask set are required

Why T-gate?

Gate fabrication is critical to achieve high HEMT performances

Goal: reduced gate resistance and parasitic capacitance to reach high RF gain and control short channel effects

Fabrication of T-gate (field-plate) electrodes

- 1) Single EBL exposure: Trilayer resists, different sensitivities, metallization, lift-off
- Double EBL exposure: «Foot» exposure, etch and thin metallization, lift-off «Head» exposure, metallization, lift-off

Mix & Match: EBL and stepper lithography

- optimization of alignment process and markes
- direct writing on 2", 3", 4" substrates
- optimization of EBL on insulating and conductive substrates

Vistec EBPG 5HR

- field emission gun (FEG)
- 100kV
- beam diameter: 8 nm
- overlay accuracy <50nm
- 10 MHz max frequency
- block size 560 μm
- laser interferometer (λ /120~5nm) + pull-in system
- laser height sensor
- wafer size up to 4"
- mask writing
- markers alignment

HSQ resist 30nm

TiAu 30nm

L+ SE1	EHT- 20.0 KV 500 nm E	kD- 14 nm	MAG- X 76.5	K PHOTO- O		
	500 ni	m				
				Di	stance = 27.8m	n

Si wires 60nm

- The e-beam is deflected by magnetic lenses to expose the resist
- The maximum area of beam deflection is called field
- A field is exposed without stage movement
- Larger areas are divided in fields and the sample is moved to expose each field
- Correction systems avoid sticthing errors between fields

Proximity effect

Energy distribution

Proximity effect correction

LEONARDO

Devices fabrication

Gate fabrication

E. Giovine

> Overlay and tick metal connection

GaAs gate

Double Recessed Gate technology

COP8.5 COP33 PMMA

Low resistance contact

T-gate

Single e-beam writing

- Trilayer PMMA/COP33/COP8
- EBL
- Development and metallization
- ✓ High Yield/Reproducibility
 ✓ High Gain for High Frequency Operation
 ✓ High Power Performance

▶ gate "head"

gate "foot"

Dose optimization for GaAs substrates

GaAs devices

HPA's performances

HPA prototypes for different application band Lg=250nm

Application	Output Power (dBm)	Gain (dB)	PAE (%)	Chip size (mm x mm)	Yield	Total Gate Periphery (mm)
6-18GHz HPA	34±1	>17	24±4	4.8 x 2.8	85%	7.0
4.5-18GHz HPA	33±1	>16	25 ± 5	5.2 x 2.9	85%	7.0
X-Band HPA	40.8±0.5	>18	35±2	3.8 x 4.2 🔇	>75%	26.4

High on-wafer yield even for large total gate periphery

LEONARDO

GaN gate

- ✓ Bilayer PMMA/COP8/Cr
- ✓ Plasma etch
- ✓ Thin metallic bilayer (Ni/Pt)
- ✓ Annealing

- > 2° EBL Gate-head shaping (R_g)
 - ✓ T-gate
 PMMA/COOP/COP8/Cr
 - ✓ Alignment foot/head
 - ✓ Thick metal (Ni/Au)

Nano Rome, 20-23 Se

zoisinnovation

Dose optimization for GaN substrates

GaN devices

RF characterization

LG=250-150-80 nm devices with 10x75µm, 8x75µm and 4x75µm gate periphery

By decreasing the Lg, the f_T is increased while the best result for f_{MAX} is with L_g =150nm E. Giovine

Conclusions

- Fabrication and optimization of T-gates, footprint down to 80nm, on GaAs and GaN HEMT
- Technology transfer research-industry
- EBL based field plate technology is now used in standard Leonardo Foundry production of GaN and GaAs HEMT Lg=0.25um

Thanks for the attention!

Raith 5150 EBL

